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1. Introduction and Summary

In this paper we consider a queueing model that could be used to represent the start-up
behavior of a long production line or the transient flow of messages over a long path in a
communication network. In particular, we consider a series of n single-server queues, each
with unlimited waiting space and the first-in first-out service discipline. Initally, the system is
empty; then k, customers are placed in the first yueue. ‘The service times of all the customers
at all the queues are i.i.d. with a general distribution having mean 1 and finite positive
variance 62. Our object is to describe the departure process from the n® queue as n gets large.
(Equivalently, since customers are served in order of arrival, we can consider infinitely many
queues in series with infinitely many customers in the first queue; we are still interested in the
departure times of the first k, customers from the n queue as n — o) We may have k,

constant, independent of n, 0T k, — oo 35 n — oo,

Let D{(k,n) be the departure time of customer k from queue n. Let => denote
convergence in distribution or weak convergence, as in Billingsley (1968). Since D(1, n) is

just the sum of n service times,
n~A(D(1,n) -n] = N(,G%) as n = o , (1.1

where N(m, %) denotes a normal random variable with mean m and variance 62. However,
we are primarily interested in the interdeparture times between successive customers after the
first from queue n. Let D(k, n) be the average of the first k interdepariure times from queue n

after the first departure, i.e.,
D(k,n) = [D(k+1,n) - D(1, M)k . (1.2)

Let Lx] denote the integer part of x. Here is what we regard as our main result.
Theorem 1.1. Suppose that the service times are i.i.d. with a general distribution having an

exponential tail. Then, forx > 0 and 0 € a S 1, there exists a proper random variable L, (x)

..




such that

n~=32p(xn%], n) = L,(x) asn — oo . (1.3)

Theorem 1.1 implies that the average of the first Lxn®] interdeparture times from queue n

(1-a)2

after the first departure is asymptotically of order n as n increases. A statement in terms

of the departure times that can be shown to be equivalent to (1.3) is
n=1*2(plxn2],n) = n] = L,(x) as n = oo, (1.4)

where L,(x) = x L,(x) for 0 < a < 1. (The relationship between Lj(x) and Lg(x) is more

complicated.)

Our primary focus is on the early departures from a large number of queues. For example,
the customer index k, associated with n queues might be %, Va or n. However, there is a
duality discussed in Section 2 that makes our results also applicable to a large number of
departures from relatively few queues. In particular, under our i.i.d. assumption for the service
times,

d
{DU,j):1Sisk, 1<sjsna}={D(j,i):1Sj<sn 1sisk} (1.5)

d
where = denotes equality in distribution. Hence, associated with (1.3) and (1.4) are dual

statements about the departure time of customer n from queue k,. For example, as a

consequence of (1.4), we obtain the following corollary.

Corollary. Under the conditions of Theorem 1.1, there exists a proper random variable Ls(x)

such that

n~*2p(xn®), n) - Lxn?)) = LiI(x) as n o = (1.6)

forx > Oand @ > 1, where




L; (X) = x-(l +a)/2L;_‘(x—l/a) . (17)
so that

D(Lxn), n)y1lxn?] = 1 asn > o . (1.8)

Three rather distinct cases are combined in Theorem 1.1: (i)g = 0, (ii)) 0 < a < 1 and
(iii) a = 1. We treat the first case with a = 0 by establishing a functional central limit
theorem (FCLT) for the departure process from queue n (Theorem 3.2); we treat the second
case 0 < a < 1 by establishing a strong approximation generalization of the FCLT and
applying the subadditive ergodic theorem as on p. 277 of Liggett (1985) to the limiting RBM
(Theorem 7.2); we treat the third case by directly applying the subadditive ergodic theorem
(Theorem 6.3). In the first case with a = 0, L,(x) is a nondegenerate random variable, but in
the other two cases L,(x) is determuinistic. In the third case with a = 1, we establish almost
sure convergence. Unfortunately, we do not yet know much about the limits in (1.3), (1.4) and
(1.6). For a < 1, the limit L,(x) depends on the service-time distribution only through its
first two moments. For @ = 1, we conjecture that L,(x) depends on the service-time

distribution beyond its first two moments.

This paper was largely motivated by Srinivasan (1989), who applied results of Rost (1981),
Andjel (1982), Andjel and Kipnis (1984), Kipnis (1986), and Benassi and Fouque (1987) about
interacting particle systems (in particular, the zero-range process and the asymmetric simple
exclusion process) to describe the hydrodynamic limit for our model in the special case of
exponential service times (still with mean 1). Roughly speaking, the hydrodynamic limit says
that the average queue length among the first [xz] queues at time ¢ is asymptotically almost
surely (a.s) equal to (2 - Vx )/\/; as t = oo. Consequently, the average queue length
among queues in the neighborhood of queue [xt] is asymptotically a.s. (1 — Vx )/\f; as

I = oo. (Note that the total number of customers in the first Lxe) queues is




(2\/; ~ x)t + o(1); then differentiate with respect to x. In the unsaturated case with external
arrival process having rate A < 1, asymptotically as. the first (1 ~ A)%r queues reach

equilibrium at time ¢ as ¢ — oo, but the rest of the density profile remains the same.)

It is easy to apply Srinivasan’s hydrodynamic limit in the saturated case (with i.i.d.
exponential service times having mean 1) to deduce that the departure time of customer Lxn]
from queue n is asymptotically as. (1 + Vx )2n + o(n); see Section 6. Thus the departure
times of customers 1 and n from queue n are a.s. n + o(n) and 4n + o(n), respectively. To
put this result in perspective, if customer n only had to wait at the first queue (as would be the
case if all queues after the first had infinitely many servers), then the departure time for
customer n from queue n would be a.s. 2n + o(n). Hence, the additional delay experienced by
customer n in the last n — 1 queues is approximately equal to his delay in the first queue plus

the sum of his service times.

Our case (iii) of Theorem 1.1 with a = 1 extends Srinivasan (1989) by establishing a
hydrodynamic limit for genera!l service-time distributions. As suggested by the discussion
above, limits for the average queue length among the first Lxt] queues at time ¢ as ¢ — oo are
equivalent to limits for n~!D(Lxnl, n) as n = oo, 50 case (iii) of Theorem 1.1 yields a
hydrodynamic limit in the sense of Srinivasan (1989) for general service-time distributions.
With regard to the interacting particle system literature, our result is interesting because the
associated vector queue-length process depicting the number of customers at each queue
(including the one in service, if any) is not Markov here. We treat this case by applying the
subadditive ergodic theorem together with an upper bound based on a stochastic comparison
involving associated random variables and the Cramer (1938)—-Chemoff (1952) theorem about
large deviations, e.g., see Vanderbei and Weiss (1988) or pp. 3.7 of Varadhan (1984).

However, we have not yet identified the limit for general service-time distributions.




We also complement Srinivasan (1989) by describing in more detail what happens at the
front of the ‘‘wave’’ of customers passing through the network. Of course, the first customer
departs from queue n at time » with a deviation of order Vn, as indicated in (1.1). The first
case of Theorem 1.1 with @ = 0 reveals that the first £ interdeparture times from queue n after
the first departure are each asymptotically of order Vn asn > . Consequently, by the time
customer k has reached queue n for large n, customer k rarely has to wait. We treat this case
by showing under appropriate conditions, that the departure process from the n" queue obeys
an invariance principle or functional central limit theorem (FCLT). The FCLT suppors
approximating the beginning of the departure process, after appropriate normalization, by an
infinite-dimensioral reflected Brownian motion (RBM) on the infinite-dimensional orthant
[0, «o)=. This infinite-dimensional RBM is the natural extcnsion of finite-dimensional RBMs
considered by Harrison (1978), Harrison and Reiman (1981a,b), Reiman (1984) and Harrison

and Williams (1987a,b).

The invariance principle implies that the approximation depends on the service-time
distribution only through its mean and variance. Moreover, the mean and variance play a
reladvcly trivial rele, In particular, the mean service time only determines the deterministic
rate customers flow through the queues; without loss of generality, we can let the mean service
time be one, and we do. The service-time variance only appears (via its square root) as a
constant multiplicative factor in front of the multivariate RBM associated with service-time
variance 1. Hence, just as with the familiar one-dimensional Brownian motion (BM)
approximation for partial sums of i.i.d. real-valued random variables, there is essentially only
one fundamental limit process for this system for all service-time distributions. We call this

limit process the departure RBM.

The model we consider has nc extermal amrival process, but the s—... model can be

interpreted as starting out empty with an external arrival piocess. Simply interpret the

..




departure process from the first queue as the extenal amival process. Of course, the
assumption that the service times be all i.i.d. implies that the interarrival-time distribution must
then be exactly the same as each service-time distribution. However, this is not required for
the FCLT. The FCLT remains unchanged if the service-time distributions at an initial finite set

of queues are different. (The stated results cover this generalization.)

To obtain further insight into the first appearance of congestion, we establish a strong
approximation that shows that the error in the RBM appmximation for the first [xn?)
customers is O(n® =% log n). We also show that the error in the RBM approximation is
asymptotically negligible compared to the size of the first Lxn®] components of the RBM. To
obtain this result we also need to describe how the components of the departure RBM grow.
Let [),‘(1) denote the k™ coordinate of the departure RBM at time 1. We apply the

subadditve ergodic theorem again to show that
k™ Dy(1) = Ly(1) as k = oo (1.9)

for L;(1) in (1.3); see Theorem 7.1. We thus obtain Theorem 1.1 for 0 < a < 1; see

Theorem 7.2.

The rest of this paper is organized as foliows. In Section 2 we revicw & convenient
representation for the departure process that facilitates its study. In particular, we exploit the
fact that the departure time of customer k from queue n can be represented as the maximum
partial sum of service times along nondecreasing paths of length k + n — 1 in a k x n lattice of

service times. From this representation, the duality mentioned above is immediate.

In Section 3 we establish the FCLT and in Section 4 we establish the strong approximation
needed for case (ii) of Theorem 1.1 with 0 < @ < 1. In Section § we establish stochastic
order relations among the interdeparture times, which are of interest in their own right, but also

help us describe the departure RBM and treat the case k, = O(n) in Section 6. In Section 6




we obtain our hydrodynamic limit, i.e., we treat the case k, = |xn). In Section 7 we
establish (1.9) and the third case of Theorem 1.1. Finally, in Section 8§ we make some

concluding remarks.

We end this introduction by mentioning some additional rcferences that provide background
or treat somewhat related problems: Chapter 6 of Disney and Kiessler (1987), Kelly (1982,

1984), Suresh and Whitt (1990) and Vere-Jones (1968).

2. The Basic Recursion for the Departure Epochs

Let V(k, n) be the service time and D(k, n) the departure time for customer & at queue 7.

Our starting point is a basic recursion for the departure times,
D(k,n) = max{D(k-1),n),Dk,n~ 1)} + V(k, n) @.mn

fork 2 1and n 2 1, with D(k,0) = O for all £k and D(0, n) = O for all n, which can be

taken as the definidon. (At this point, we do not assume that the service times are i.i.d.)

We can easily express D(k. n) more directly in terms of the service times. To do so, let
[T(k. n) be the set of all ‘‘nondecreasing continuous paths’’ of length & + n — 1 from (1,1) to
(k, n) in the set of ordered pairs P = {(i,j):1 < i<k 1 < j<n)ie.ne Ik n)ifxn
is a subset of P of cardinality kK + n — 1 containing (1,1) and either (i + 1, j) or (i, j + 1),

but not both, whenever it contains (i, j). Since successive ordered pairs in any such path n

+n-2

aths in [1(k, n).
k=1 P in [1(k, n)

increase in the first component exactly & — 1 timgcs, there are {k

From (2.1), we easily establish the following by induction.

Proposition 2.1. Forallk 2 landn 2 1,




D(k,n) = max {Dk-1,0)+ 3 V(k, j)} 2.2
[sisn jml
k
= max (D, n-1)+ 3 V(,n)} 2.3)
1sSIsSk ]
= max Vi, DY . 24
L {u.;'e ) (N} (

Evidently Proposition 2.1 is quite well known; e.g., formulas (2.1) and (2.3} appear as (1),
(2) and (16) of Tembe and Wolff (1974). A variant of (2.4) for queues without extra waiting
space appears in Muth (1979). As Muth observes, (2.4) implies that the departure tmes
D(k, n) are unchanged if we reverse the order of the queues and the order of the service times
at each queue. Let superscripts index different models.

Corollary 1. If V2*(i,j) = Vi(k-i,n=j) for 1SisSk 1<,<n then

D*(k, n) = D!(k, n).

d
Formula (2.4) also implies a certain duality, i.e., symmetry in & and n. Let = denote

equality in distribution.

d
Corollary 2. If {V'(i,j):1<Si<sk 1SjSna}={Viji):1Sisk LSj<n}

then
d
(DY, j):1Sisk1<jsn}={D¥,i):1Sisk 1SjsSn}.

As an immediate consequence of Corollary 2, we obtain the following -result in the i.i.d.
setting which is of primary interest to us.

Coroliary 3. IfV(i,j),1 S i S k 1 S j S n, are i.id., then (1.5) holds.

Corollaries 2 and 3 can be used to obtain limit theorems as k = o for ixed n from the
limit theorems we establish as n — o« for fixed k. Corollaries 2 and 3 also allow us to relate
the interdeparture times of primary interest to us to associated sojourn times. The k%

interdeparture time from queue n is

-




A(k,n) = D(k+1,n) —D(k.n) (2.5)
with D(0, n) = 0, fork =2 0and n 2 1. The sojourn time of customer k at queue n is
S(tk,n) = D(k,n) =D(k,n-1) . (2.6)

Corollary 4. Under the assumption of Corollary 3,

d
{AG, f):0sisk=-1,1Sj<sn}y=8(j,:1sjsn 1<isk} 2.7

Remarks. (2.1) Corollaries 3 and 4 immediately provide an analog of Theorem 1.1 for the

average sojourn time of the first n customers from the first Lxn®] queues after the first queue.

(2.2) The function mapping {V(i,j):1 S i<k 1S jsSa}into {D(,j):1S i<k
1 £ j < n} is obviously nondecreasing and convex, so that stochastic order relations for
service times carry over to departure times; see Stoyan (1083). The function is also Lipschitz,

te., for each path @

Yy vii,p- I Vz(i.j)is )2

(i.j)erx (i.))en (.jex

vid, jy - Vi, j)

and

m "'_2"’Sk+ -1 i, j) = v, j
 max {ID (i, j)) =D, ) (k+n )lgn‘a:;k{. () (i, N1}
1sj%n 1SjsSn

so that there is model stability; see Whitt (1974).

3. The Functional Central Limit Theorem

We now apply (2.2) to show that {D(k, n)} satisfies a FCLT as n = o when {V(k, n)}
does. (We do not assume that {V(k, n)} is i.i.d. here.) For this purpose, let D[0, ) be the
space of right-continuous real-valued functions on the interval [0, ) with limits from the left,

endowed with the usual Skorohod (1956) J, topology; see Ethier and Kurtz (1986) or
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Whitt (1980). Let D[0, )= be the product space endowed with the product topology.

Let V, and D, be random elements of D[0, «)™ defined as follows:

Vo = (Vln’ V2nv'--)
D, = (Dyp,D1ay,...)
3.1
[nr]
Via(®) = n7¢ [/Z Vik, j) - nt:I. 20,
=1
D (t) = n~*(D(k, (nt]) = nt) , 20,

fora > 0.
Theorem 3.1. If V, = Vin D[0, )™ as n = oo where V has continuous paths w.p.1, then

D, = D in D[0, «)" as n — o, where D = f(V) with f:D[0, o)™ — D[0, c0)~

defined by

i

HX@) = x1(8)

and

Fe(x)(2)

]

sup  {fi-1(8) + xx(2) — x,(s) } (3.2)
0sss!t

xg(t) - o sh}fs l {xe(8) = fe-1(8)}

forallk 2 2ands 2 0.
Proof. First, from (2.2) and (3.1) it is immediate that D, = V,,. Next,

D (t) = n~*(D(k, [nt) - nt)

)
-a Dk=-1, 1)+ ¥ V(k, )} -
:s“z“;xm{ (k h E‘,l k. )} -m

=n

(1)
n"“[ sup {D(k-1,(ns]) ~ns+ S‘:‘, Vik, j) = n(t-35)}
0Ssst ]-[M]

o Sup., {Di-1.a(s) + V(1) = Vin(8) + n7V(k, [ns])} .

However, since V,, = V, where V, has continuous paths,
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sup n"*V(k, [(ns]) = 0 in D[0, o) :
0ssst

i.e., the maxirmum jump functional is continuous. Hence, by the convergence-together theorem

(Theorem 4.1 of Billingsley) and induction, (Di,,....D.) converges if
(F1(Va), ..., fi(V,)) converges. However, it is easy to see (e.g., by Section 6 of Whitt
(1980) and induction) that (fy,....fx) : D[0,e)= = D[0, )* is continuous for each k.

Since we are using the product topology, that implies that f itself is continuous. Hence, the
desired convergence holds by the continuous mapping theorem (Theorem 5.1 of
Billingsley). m.

Remark (3.1) By the duality in Corollaries 2-4, Theorem 3.1 can also be regarded as a direct
consequence of previous heavy-traffic limit theorems for the sojourn times of the first Lnz)
customers at the first & queues; see Iglehart and Whitt (1970), Harrison (1973), and
Reiman (1984). For the sojourn times, the case we consider corresponds to having the traffic
intensity at queue { be p; = 1 for all i. As in previous heavy-traffic limit theorems, we could

let the service-time distributions change in the limit. =

We can obtain a representation for the limit process D in Theorem 3.1 paralleling the
representation of D(k, n) as the maximal partial sum of the service times over all paths in
IT(k, n) in (2.4). For this purpose let T,(z) be the set of nondecreasing (k + 1)-tuples
(tg, ty. ..., 1) with tg = O and ¢, = . The following is deduced from (3.2) by induction
on k.

Corollary. The limit process D = {Dy: k2 1} = f(V) = {fi(Vy,....V,) 1k 2 1} can

be represented as

- k. -
Dy(t) = sup{ Y [Vi(t;) = Vi(t;i21)] : (2o, 8y, ..., tg) € T(0)} (3.3)

im]

forall &k 2 1.




The standard case has normalization exponent a = 1/2 in (3.1) and service-time limit

process v being Brownian motion (BM), i.e., a vector of independent one-dimensional BMs,
The resulting limit process D for the departure process is then an infinite-dimensional reflected
Brownian motion (RBM) on the infinite-dimensional orthant. Such infinite-dimensional RBMs
can be constructed by extending corresponding k-dimensional RBMs on the k-dimensional
orthant; see p. 83 of Neveu (1965). The k-dimensional RBMs in tum coincide with those
considered by Harrison (1978), Harrison and Reiman (1981a,b), Reiman (1984) and Harrison

and Williams (1987a,b).

Let B = (é,. 52....) be a standard BM on D{0, «)*, by which we mean a vector of
independent standard (drift O, diffusion coefficient 1) BMs. To obtain the standard limiting
case, we assume that the service times are i.i.d. However, in order to cover the case of a
general external arrival process, we exclude finitely many queues in the condition.

Theorem 3.2. If there exists a finite m such that {V(k,n) : k2 1, n 2 m} is iid. with

EV(l,m) = 1 and Var V(1, m) = 62 < o, then the condition of Theorem 3.1 holds with

V = 6B where B is a standard BM. Then D = of(B) for f in (3.2). The associated

interdeparture-time limit process A, defined by &, 15,,1 - 15,. k21, and 30 = Dy, can

be represented as

-~ ~ 'y - k-1 "
Ag = 0By, Yy = 6By - Y A
i=Q
Ag() = Yi(t) - inf Ye(s) m Yu(e) + 1,(0) . k21 . (3.4)
S
Then [(3,. .. .3,), (i,. e .7,‘)] are the unique pair of k-dimensional processes so that

PN

A (1) = f',-(t) + i,»(r).&,-(t) 20, i;(t) is nondecreasing with ;,-(0) = 0 and

t PS
.[0 Lia,e0ydi(s) =0

for1 €i < kand ¢t 2 0. Moreover, for each k, (31, C. .3 ¢) is a k-dimensional RBM as in
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Harrison and Reiman (1981a,b) generated by a zero-drift BM with covariance matrix Z having
elements £; =202, 1SiSk L4y =Z;01;=-0% 1Sisk-1and Z; =0
otherw e, and reflection matrix R = / - Q, where Q;;,; =1 for 1 <i< k-1 and
@, = 0 otherwise.

Proof. By Theorems 3.2, 4.1 and 16.1 of Billingsley (1968), V, = oB. By induction,
f(6x) = 6f(x) for fin (3.2). Hence, D = f(oB) = of(B). The representatio.. (3.%) is an
easy consequence of (3.2). The characterization of the pair [(Z&l. - ,[&k), (;,. ce .;k)]
follows from repeated application of the one-dimensional characterization of the reflection map
on p. 19 of Harmrison (1985) (sometimes called Skorohod’s lemma (1961)), and induction. The
characterization of (151. .. ,A x) as an RBM follows by the arguments of Harrison (1978) and
Harrison and Reiman (1981a,b) or directly from those papers, after exploiting the duality in
Corollaries 24 of Proposition 2.1. The RBM structure is easy to see in this case of an acyclic

network by writing (3.4) in differential form. Then

dAy = dB,
R - k-1 . N
dAy = dByyy — Z dA; + dly . 3.5
im0
By induction, (3.5) can be rewritten as
dAy = dB,
d&l = de—dél +dil
dA, = dBy,; —dBy ~dly_y +dl,, k22 . (3.6)

This is the differential form for the RBM plus Ag; i.e., from (3.6) we obtain Z = X + YR as
in Harrison and Reiman (1981a,b), where Z = (A,,...,4,), X is the BM with components
X, =B,y -B;and¥Y = (y,....1;). =

Remarks (3.2) Additional characterizations of the departure RBM such as the generator and a

generalized It0’s formula follow from Harrison and Reiman (1981a,b). Since the BMs é,- in
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the construction have zero drift, the departure RBM does not have a proper stationary

distribution.
(3.3) We do not know much about the joint distribution of (A,(1)....,Ax(1)).

- - - -~ d -
However, since Ay = 6B, — 6By, A, = V26 [B,|. Hence, Ay(1) has a positive normal
distribution with E[A,(1)] = 26/Vr and E[A;(1)?] = 20%. In Section S we show that

A « () is stochastically decreasing in k and stochastically increasing in ¢.

4. The Strong Approximation

Under the assumptions of Theorem 3.2, we know that the interdeparwre times of the k™
customer from the n™® queue are asymptotically of order Vn asn = « for any k. We now
want to say what happens if the customer index increases with n. For this purpose, we
establish a strong approximation result, drawing on Komlds, Major and Tusnddy (1975, 1976);
see p. 107 of Csorgd’ and Révész (1981). We show that the error in the diffusion
approximation is O(n(® ~*%)log n) when the largest customer index k is n®. We state the
result below in an equivalent unnormalized form; to obtain the stated bound, divide through by
V.

Theorem 4.1. If, in addition to the assumption of Theorem 3.2, all service times are
independent and there exist positive constants K and A such that P(V(k, j) > x) < Ke™™ for
all &, j and x, then there exists a probability space supporting the departure times D(k, j) and

the limit process D= cf(é) such that, for any a > 0,

max  {ID(k.j) = j = Vn De(jim|} = O(n°logn) as.

15k

1Sj8n

Remarks. (4.1) Theorem 4.1 establishes part of the second case of Theorem 1.1 with
0 < a< 1. To determine the order of magnitude of D(k,,n) for k, = Lxn®] for

0 < a < 1, we have thus reduced the problem to determining how D £(1) behaves as k — oo,
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which we discuss in Section 7.

(4.2) In Theorem 4.1 we focus on the departure times, but a corresponding result holds for
the interdeparture times A(k, n) in (2.5) by applying the triangle inequality. In particular, as

an immediate consequence of Theorem 4.1,

L max | (1A ) = Vr(Dini (im) = Dy(iimll} = Otnlogn) as. (1)
1s/jsn

Theorem 4.1 is proved by combining Lemmas 4.4 and 4.5 below. Lemmas 4.1-4.3 below
are used to prove Lemma 4.4.
Lemma 4.1. 1If {U,:k 2 1} is a sequence of independent random variables and there exist

positive constants K and A such that P(U, > x) < Ke™** for all x > 0, then for anya > 0

max {U,} = O(logn) as.
1sks Lnel

Proof. For any x,,

P[ max {U;} > x,,] s1-(1 —Ke""')"'
1Sks Ln]

Hence, for x, = (a + 2)log n/A,

a+2

P(A,) = P(_max  (Up} > &3

logn) S 1=(1=Kn~ @0y~
< 1 - exp(log[(1 — Kn~@*P)""])
S 1 -exp(n®log[1 - Kn=(a+2)])
< - n%log (1 - Kn~@*%)

S 2Kn~? for n sufficiently large

using e™* 2 1 - x in the second to last step and log(l = x) = = x = — = — - ... for

0 < x < 1 in the last step. Since i P(A,) < o, P(A, infinitely often) = 0 by the

n=]
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Borel-Cantelli lemma. Hence, there are positive random variables X | and X, such that

max {Ug} <X +Xslognforaln21 as. =
15ks Lae)

We now extend a strong approximation result of Komlds, Major and Tusnddy (1975, 1976),
p. 107 of Csorgd’ and Révész (1981).
Lemma 4.2. Under the assumptions of Theorem 4.1, there is a probability space supporting

independent standard BMs §k and the service times so that

el ,-é:‘l Vik, j) = 1 = 6B,()|} = OClog n) aus.

Proof. The service times of all customers at all queues after the first m are i.i.d., but we do not
have identical distributions at earlier queues. However, by Lemma 4.1 and the assumption of
Theorem 4:1, without loss of generality it suffices to assume that all the service times are i.i.d.
To support half this claim, note that cé,‘(l) is nomally distributed with mean O and variance
I6?, so that these variables satisfy the same tail condition imposed on the service times for
1 £ ! S m (possibly with different constants K and A). Hence, it suffices to assume that
{V(k, j)} is iid., with the distribution of V(1, m), and we do. By Komlds, Major and

Tusnddy (1975, 1976), for each k there is a probability space containing a BM B, such that

1 - .
P{ max |3 V(k. ) -1~ 0By(D)| > Clogn+x} < Ke ™™
lj-l

for positive constants C, K and A depending on the distribution of V(1, m). Hence. us. 3 a

product space, we can achieve
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{ -
P(A,) = P T 3 Vk, j) =l -0By(l)} > Clogn+x,
s ) |/

k n ;
1sisa W

$1~(1-Ke bl

As in Lemma 4.1, choose x, = (a + 2)log a/A to obtain P(A,) S 2Kn=2 for n sufficiently

large. By Borel-Cantelli, P(A, infinitely often) = 0. Hence, there exist random variables

X, and X, such that

4 a
ma Vik,j) -1 -0c8B,( X, +X,logn a.s.
lf;fo,J 3 Vik. )) NO) 1 + X2 log

a
i=1

For the next lemma, we specify some quantities associated with a real-valued function

defined on the positive integers, say y. Let

yT(n) = max yk) and llyll, = |)’|T(n) wn21. 4.2)
1Sksn

The following elementary lemma can be viewed as a special case of Theorem 6.1 of

Whitt (1980).
Lemma 43. Foralln 2 1, lly] = y1lla < lly1 = y2lla
Let D* (k, n) be the following function of the limiting BM B,

D*(1,n)
D*(k, n)

Oél (n)

6By(n) = min {OB,(j) -D*(k-1,/)} 4.3)
1SjSna

max {D*(k-1,) + 6B,(n) - 0B,(j)}
1sjsSn

forn 2 1 and k£ 2 2. Let e denote the identity function, i.e., e(¢) = r,¢t 2 0.

Lemma 4.4. Under the assumptions of Theorem 4.1, for any a > 0 there exists a probability
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space supporting the departure times D (k, j) and the process D* in (4.3) such that

, N oo . k, . = a s,
lf?g}q {ID(k, j) = j= D (k, )|} = O(n°log n) a.s
jSn

Proof. Note that (4.3) is not quite the same function of cék(n) as D(k,n) is of

n
3 [V(k, j) = jlin (2.2). The exactly corresponding function is
=1

D’(1,n) = 6B,(n)

D'Gm) = max {D(k-1,)) +6B,u(n) —0B,(j - 1)} . 4.4)
S/Sn

However, by (2.2), (4.1), (4.2), (4.4) and Lemmas 4.1 and 4.3, there are random variables X,
and X, such that

ID*(k,+) = D* (k. )la < IID"(k = 1,1) = D™ (k= 1,)]la

+ max {|6B.(j) - 0B,(j - D[}
1Sjsn
< IID'(k— 1,) - D'(Ic— 1.')||,, + X, +X,logn (4.5)

< k(X, + X,logn) for k s Ln®] ,

where we have used the fact that 6B () - 6B ¢(j = 1) are i.i.d. normal random variables in

the second to last step and induction in the last step. In particular, by Lemma 4.1,

L <P {loBx(Jj) — 6B4(j - 1)|} = O(logn) a.s.
1€jSa

Hence,

B

ax {ID’(k, j) = D*(k, NI} S n°(X1 + X3 logn)

1<
1sSjsn

W

and it suffices to do the proof with D’ in (4.4) instead of D* in (4.3). By an argument just
like (4.5), using Lemma 4.2 now, there exist a probability space supporting the processes D

and D’ and finite random variables X; and X, such that




- 19 -

“D(l,) - e() - D’(l.)“n < Xl + X2 logn a.s.
and
|DCk,") — e(:) = D’ (k, Mla S Xy + Xy logn+ [Dk=1,7) —e(:) =D (k= 1,)|l.. as.
for1 < k £ Ln®). Hence,
ID(k, ) — e(*) = D" (k, )|l € La®J(X, + X3 logn) = O(n®logn) a.s.

foralk < ln%). m

To prove our next lemma we want a continuous analog of (4.2). For a real-valued function

of a real-variable, say y, let

y' ) = sup y(s) and |yl = IylT@.e20. (4.6)
0<ssst

Paralleling Lemma 4.3,

Iyl = yIl s llyy = y2ll, @.7

Lemma 45. Foranya > 0

llsskssl' nt) {ID" (, ) ‘\[—Dk(.l/’l)l} O(n’logn) a.s.
isa

Proof. Note that

{(NnD(n) : :20} {D(t) : t 2 0}

and

d . :
(D*Ck, [t]) k2 1,020} = {Dp([e]) :k 21,220} .

Hence, what we want to show is

<SP L) {IDe(r) = Dy(IsD)]} = O(n®logn) as. (4.8)
0stsn

By 4.7),
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1DL() = Dt Dlla S 1De-1 () = Dot (DM + l6BL() = 6B (I DI, . (49)

However,

IA

max _ [1084() = oBy((Dll,

o max { sup  {|By(s) = Bi()|}} 4.10)
1 sks | Sk 1

1sksin') <5<+
l1sysn

[7a)

X; +X;logn as.

for finite random variables X; and X,, by Lemma 4.1. Combining (4.9) and (4.10) gives

(48). =m

5. Stochastic Order for the Interdeparture Times

In this section we establish stochastic comparisons for the interdeparture times A(k, n) in
(2.5). We say that a random element X is stochastically less than or equal to another random
element X,, and write X, <, X,, if EA(X,;) S Eh(X,) for all nondecreasing bounded

measurable real-valued functions h; see Kamae, Krengel and O'Brien (1977). We are

d
interested in the case X, is an array of real-valued random variables. As before, let = denote

equality in distribution.
Theorem 5.1. Suppose that the service times V(k, n) are all mutually independent.

d
(a)If V(k,n) = V(1,n)forallk 2 1and n 2 1, then

{A(k+1,n):k21,n21}s,,{ACk,n):k21,n21},
so that
V(l,n) Sy A(k+ 1,n) S,;, A(k,n) fork21landnz21.

d
®IfVk,n) = Ve, 1)forallk 2 1and n 2 1, then

{AGk,n) k21, n21}S,{Ak. n+1):k21,n21},

so that
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Vk+1,1) S, Alk.n) S, Akon+ 1) fork21and n 21 .

Proof. We do only part (a) because the proof of (b) is similar. We construct a process
{j(k +1,n:k21,n21} with the same finite-dimensional distributions as

{Atk+1,n):k21,n21} suchthat
Ak+1,n) <A(k.n) as forall k2land n21 . (5.1)

For this purpose. we use service times V(k, n) defined by f/(k +1,n) = V(k, n) for all & and
n. By our assumptions, {\7(k. n):k21,n21} is distributed the same as
{(Vik.n) k2 1,n21}. We define A(k, n) and D(k, n) just like A(k, n) and D(k, n) but

using the service times V(k, n) instead of V(k, n).
By (2.1),

A(k,n) = max{D(k,n), Dk +1,n=1)} +V(k+ 1,n) - D(k, n)
= [Dk+1,n-1)=D(k,n))" +Vk+1,n). (5.2)

Hence,
Atk+1,n) = [Dk+2,n=1) =Dk +1,m)]* +V(k, n) . (5.3)
From (5.2) and (5.3), we see that (5.1) holds if
Dk+2,n~1)=D(k+1,n)SDk+1,n=1) = D(k, n) (5.4)

forall k 21 and n 2 1. We establish (5.4) by induction on the sum of the indices (m = k + n

in D(k, n)). Note that
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Dk+2.n-1)=Dk+1,n) =
max{D(k+ 1., n-1),D(k+2,n=2)} + V(k+2,n—-1)
—max{D(k, n), Dk + 1,n= 1)} + V(k + 1, n)
(Dk+2,n-2)=D(k+1,n-1]" +V(k+2,n-1)
~[Dk,n) =Dk +1,n=1D]* +V(k+1,n)
(Dk+2.,n=2)-Dk+1,n=D]* +Vk+1,n=1)
+ [Dk+1,n=1) = Dk, n)]” ~ V(k, n)

(Dk+1,n=2) =Dk.n=1D]* +V(k+1,n-1)

+ [Dkon—-1)=-Dk=1,n]" -Vk,n) 52

1]

]

A

by the induction hypothesis, where

Z =max{Dk+1,n=-2),Dk,n~1)}-Dk,n=1)+V(k+1,n-1)
- max{D(k-1,n),Dk,n = 1)} + D(k,n = 1) = V(k, n)
=Dk+1,n-1)-D,n) .

To start the induction, note that, for n = 1 and any &,

Dk+2,n-1)=Dk+1,n = ~Dk+1,1)
= (VA 1)+ -+ V(k+ 1, 1) = =V(1,1) = [V(1, 1) ++ V(k, 1)]
S -D(k,1) = D(k+1,0) = D(k, 1) .

Hence, (5.4) is established and the proof is complete. ®

Corollary 1. Under the conditions of Theorem 5.1(a), for each n 2 1 there exists a proper

stochastic process {A(k, n) : k 2 1} with A(k, n) 24V(1, n) such that

{ACk+j.,n):k21} = {A(k,n):k21}in R~ as j = oo .

We can apply Theorem 5.1 to obtain a stochastic comparison for the limit process in

Theorem 3.1. We actually focus on the associated interdeparture-time limit process

'&k(t) = bk+l(') - bk(t)-

Corollary 2. Suppose that the service times V(k.n) are all independent and the FCLT

V, = V holds as required for Theorem 3.1.
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([N

(a) If V(k, n) V(l,n)forallk 2 1and n 2 1, then

{Are1 () 21,020} S, {Ax(r) 1 k21,020}

forall k > 1.
d
O IfV(k,n) = V(k, 1) forallk 2 1and n 2 1, then
{A(D) 1 k21,0203 S {Ap(t+u): 1,620}
forall u > 0.

Proof. Use the fact that stochastic order is preserved under weak convergence. ®

6. The Hydrodynamic Limit: The Case k, = O(n)

In this section we describe the behavior of D(k,, n) (and, equivalently, D(n, k,)) when &k,
is of order n. We first apply the hydrodynamic limit of Rost (1981) as discussed in
Section 4.2 of Srinivasan (1989) to treat the special case of exponential service times.

Theorem 6.1. If all the service times are i.i.d. with an exponential distribution having mean 1,

then

lim n~!'D(lxn). n) = 1 +Vx)? as. foranyx > 0.

A = e

Proof. By Section 4.2 of Srinivasan (1989), the average queue length among the first Lxr]
queues at time r is asymptotically as. (2 - \/;)/‘/; as t = oo, Hence, for x > 1, the
average queue length among the first 7 and | x? n) queues at time Lx?n] are asymptotically a.s.
(2 - x ')/x™! = 2x -1 and 1, respectively, as n — . Hence asymptotically a.s. there are
x%n + o(n) customers in queues 2 through x%n and (2x - 1)n + o(n) customers in queues 2
through n. Hence, asymptotically a.s. (x2 = 2x + 1)n + o(n) customers have departed from

2

queue n, and the departure time for customer (Jc2 - 2x + 1)n from queue n is x“n + o(n).

Now do a change of variables, replacing (x - 1)? by x.
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d
To treat x < 1, note that n~* D(Ix*n], n) = n~' D(n, x%n)). Let n’ = x*n. Then
n~! D(n, Ix*n)) = (x2/n)D(Ln/x2], n) + o(1). From the previous argument,

2

(x2/n)D(Lnix*), n) > x* [;lc- +1] =@x+1)® as. asn—> o .

For x = 1, consider the average queue lengths among the first n and 4n queues, and reason

similarly. ®

We now establish the existence of a limit for a general service-time distribution having an

exponential tail. First, recall that under the conditions of Theorem 4.1,

ls‘n}‘ﬁd{V(z,J)} = O(log n) as.
15jsn

by Lemma 4.1, so that
D(lxnl, n) < O(nlogn) as.
However, we will show that D(|Lxnl, n) is actually O(n).

For this purpose, we exploit a stochastic comparison involving associated random variables;
see p. 29 of Barlow and Proschan (1975). Recall that a family of random variables are
associated if all pairs of nondecreasing bounded real-valued functions of the random variables
have nonnegative correlation.

Lemma 6.1. If the service times {V(i,j): 1 Si <k 1 S j< n} are independent or just

associated, then the partial sums Y, V(i, j) for the [k '; n ; 2] paths = in I(k, n) are
(iNex

associated random variables.
Proof. The partial sums are all nondecreasing functions of the kn service times. =

Theorem 6.2. If the service times V (i, j) are all independent, then
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D(k, n) <, max{S, : e IT(k, n)}

where Sy, © € T1(k, n), are mutually independent with
d

Su = Z V(i,j)
(i,lexn

for each path &.

Proof. Apply Theorem 3.2, p. 33 of Barlow and Proschan (1975). =

We now use this stochastic bound to develop a bound and heuristic estimate for

lim n~'D(lxn, n]) for a general service-ime distribution. We call this the path-

n —>oo

independence bound. We also use this bound to show that the limit exists.

Theorem 6.3. If all the service times are i.i.d. with EV(1, 1) = 1 and there exist positive
constants K and A such that P(V(1,1) > x) S Ke™** for all x > 0, then there exists a
deterministic strictly increasing concave function y(x) with y(x) 2 1, y(x +y) = y(x) 2 y

and y(x) = xy(x~!) forall x, y > O such that

lim n~'D(lnx], n) = y(x) as. (6.1)
and
lim Eln'D(Lnx), n) = y(x)| = 0 6.2)

for all x > 0. Moreover,

1 +xE(max{V(1,2), V2, 1D)}) 21+x,0<xs1
¥(x) 2 ‘ (6.3)
x+ E(max{V(1,2),V2,)H)}H 21+x,1sx,

and

¥(x) S(1+a*)(1+1x), (6.4)
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where
a" ma*(x) =infla>0:(1+x)ha) > (1 +x)log(l +x) —xlogx} (6.5)

and

h(a) = sup {6a - log EeblVa.m -1y (6.6)
Proof. We first establish the upper bound in (6.4). Using Stirling’s formula, p. 52 of
Feller (1968), we see that the number of paths in TT(Lxn], n) is ¢(x, n) = "™ *°™ where

y(x) = (1+x)log(l+x)-xlogx.
Let xt,, be a path in IT(Lxn], n) and let S, be the partial sum of all service times on path &,
By the Cramér (1938)— Chemoff (1952) theorem,

P(Sx, > (1 +a)(1 + x)n) = e~(1+2)mh(@) + oln)

where h is defined in (6.6). Using the path-independence bound established in Theorem 6.2,

we have
P(D(xnl,n) > (1 +a)(1 +x)n) S 1= (1 = e *+0h@)+o()yox,n)  (67)

The critical case @ = a°(x) given by (6.5). If h(a) > h(a"), then the probability in (7.7)
converges to 0, whereas if #(a) < h(a®), then the probability converges to 1. In particular,

foranya > a°,

3 P(D(Lxal, n) > (1+a)(1 + 1)) < o,

so that we can apply Borel-Cantelli to deduce that

iim n~'D(lxn),n) S Q1 +a)(1 +x) as.

R = e

Hence, we have the claimed upper bound in (6.4).
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Now we apply the subadditive ergodic theorem on p. 277 of Liggett (1985) to establish the
existence of the limit. We first consider the limit of n=! D(kn, In) for k and I integer. We let

Xo00 = 0,
~Xgn = Dlkn, In) = V(1, 1)

and —X,, , be —Xo ,-m applied to the shifted service times V' (i, j) = V(i + km, j + Im);
eg.fork=1=1,X,_1, =0and =X,_2, = V(n,n) + max{V(n-1,n),V(n,n-1)}.
With this definition, X is subadditive, i.e., Xo» £ Xom + X2 for0 S m < n. Moreover, X
satisfies the other conditions of the subadditive ergodic theorem; in particular,

{(Xta-1)kme :n 2 1} is a stationary process for each k,

d
{Xmmer &k 20} = {Xpmermease1 : k 20} for each m, and E(X§ ) < oo. Hence,

n~'D(kn, In) has a deterministic limit n(k, !) in the sense of (6.1) and (6.2) for all integers k
and /. When n is a multiple of /,

1
—D
n {

ﬂ] 11,
l n

ki;-, 1—] - %n(k. ) as n = e as.

More generally,

D %anuJ. tlwi)| s D(lkn/t), n) s D —'I‘-I(Ln/u + 1), I((n/1) + 1),
where

-1l k _ Ll 1 1

n!'D lth/tJ.th/tJ] == mD(kLnllJ).an/lJ)a In(k.l)

and
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Lnst) +1 1

1|k -
n"! D| 3 Iclart) + D, ILnrt) + 1) " IS Dk(Ln/t] + 1), I(Lnrt] + 1))

—)%n(k,l) a8 N — o as.

Hence, (6.1) holds for all positive rational x. A similar argument applies to (6.2).

To treat irrational x, we apply Theorem 5.1a to deduce that y(x + y) — y(x) is decreasing
in x through rational x for each rational y. Hence, Y is nondecreasing and concave restricted to
the rationals. Since Y is nondecreasing overall, y is nondecreasing and concave, and thus
continuous, overall. Hence, the limits (6.1) and (6.2) extend to irrational x. (Note that
n~'D(Lnx], n) is sandwiched between corresponding averages for rationals that converge.
This implies the existence of convergent subsequences as n — o. The continuity of ¥ on the
rationals then implies that all limits of convergent subsequences converge to a common limit,

implying convergence for the full sequence.)

To see that y(x + y) - y(x) 2 y, so that y is strictly increasing, use the fact that

i=(x |
D(L(x+y)nl, n) 2 D(lxnl, n) + (i’) V(i, n) .
im L] +1

By considering only paths through (2k, 2k) for all k, 1 € k < min{xn, n}, we easily

obtain the lower bound in (6.3). To see that y(x) 21 for all x > O, note that, for all x,

d :
D( Lxnl, n) > D(1, n) for all n sufficiently large. Since D(k, n) = D(n, k) for all » and %,

we see that

Y) = lim a~'D(lxnl), n) = lim an_ -[}L’Lrb(l.xn.l. Lxnl/x)

= lim L;"-I -[%m'-D(anJ/x, Lenl) = xyx™!) . ®

To illustrate the path-independence bound, in (6.4)—(6.6) suppose that the service times
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have an exponential distribution as in Theorem 6.1. Then
EVAD-1 = (1 -9)'e® and h(a) = a-log(l +a) . (6.8)
From (6.5) and (6.8), we obtain a” by solving
(l+x)a-logl+a)] = (1+x)log(l +x)~xlogx,
which for the case x = 1 is
a® -log(l+a®) =1log2,

yielding a* = 1.68 and limn~'D(n, n) S 5.36. From Theorem 6.1 we see that this is

R—ves
indeed an upper bound, which seems to be not a terrible approximation. Evidently, there is
enough dependence among the paths to reduce this estimate by a factor of 0.746.

Example 6.1. It is possible that the infimum in (6.5) is not attained as an equality. For
example, suppose that V(i, j) is Bemoulli, assuming the values O and 2 each with probability
1/72. Then h(a) = [(1+a)log(l+a)+(1~a)log(l-a)l’2, 0<a< 1, and

h(a) = oo for a2 1. Forx = 1, lin} h(a) = log 2, so that a*(1) = 1, which yields
a—1-

y(1) < 4.

7. More Properties of the Departure RBM

We established the strong approximation in Section 4 in order to deduce more about the
departure times of customer &, from queue n when k, — oo as 1 = oo, We now establish a
limit for the way the departure RBM components 5,(1) grow as k — oo that enables us to
conclude that the average of the first [xn?] interdeparture times from queue n after the first
departure is of order n! ~9¥2 for any x > 0 and any a satisfying 0 < a < 1. The limit is
obtained by applying the subadditive ergodic theorem once more.

Theorem 7.1. Let D = f(é). Then there exists a deterministic nondecreasing concave
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function ¥(x) such that

lim ™' D yj(n) = 9(x) a.s. 7.1
so that
A Di(l) = J(x) as n > = (7.2)

foreachx > 0.

Proof. As in the proof of Theorem 6.3, we apply the subadditive ergodic theorem on p. 277 of
Liggett (1985). We first establish the limit for n"b,-,.(kn) for j and k integer. We let
~Xon = Dju(n) and -Xm, be =-Xoa.-m applied to the shifted process
Bi(t) = Biopn(t +1Im) — B;,pm(im). With this definiion, X 1is subadditive, i.e.,
Xon S Xom + Xma for 0 £ m < n, and X satisfies the other conditions of the subadditive
ergodic theorem, except possibly for the bound. To establish the bound, we consider a related
discrete problem. We consider the kn x [n integer lattice. We associate with the point (i,j) in

this lattice the random variable

WG, j) =  sup 1Bi(t) = Bi(j - DI . (1.3)
j=1st<j
It is easy to see that
Djy(kn) < e ?1‘(1?,.@) {(‘_}:e . W3,j))} + W(jn.kn) . (7.4)

For each path =, the random variables W(i, j) for (i, j) € = are i.id. Mort‘:over. for different
paths, the partial sums are associated. Hence, we have a path-independence bound for the right
side ~f (7.4) paralleling Theorem 6.2. Using the known tail behavior of W(i, j) in (7.3), we
have the required bound for the subadditive ergodic theorem. Hence, n~! D jn (kn) converges
a.s. to a proper limit as n = oo. As in the proof of Theorem 6.3, we use this result to deduce

that (7.1) holds for each rational x. We then apply Corollary 2 to Theorem 5 to deduce that
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Y(x + y) = ¥(x) is decreasing in x through rational x for each rational y. Hence ¥ is
nondecreasing and concave restricted to the rationals. Since ¥ is nondecreasing overall, ¥ is

nondecreasing and concave overall. Hence, (7.1) extends to irrational x. Since
b ~ d ~
n~% D |xnf(1) = a7 D ;4 (n) for all n, we obtain (7.2) directly from (7.1). =

We now apply Theorem 7.1 to obtain a limit for the average of the first [n°] departure
times for 0 < a < 1. The following shows that this average is asymptotically of order
1 - a)/2'

nt

Theorem 7.2. Under the assumptions of Theorem 4.1,

D(lxn], n) - DU, n)

L+ a)2 = Y(x)

for ¥(x) in Theorem 7.1and 0 < a < 1.

Proof. Note that

D(lxn%), n) - D1, n)

n(l+a)/2

ﬁbwj(l)] .

n(1+a)/2

1.5)

D(Lxn®), n) = n = VnD (1) | _ (DA, 1) =1
n(1+a)2 p(1+a)2 :
By (7.2) in Theorem 7.1, the first term on the right in (7.5) converges in probability to ¥(x).
By Theorem 4.1, the second term on the right converges in probability to 0. By (1.1), the third

term on the right convergest0 0. ®

8. Concluding Remarks

There are several stones left untumed. First, it would be nice to identify the hydrodynamic
limit y(x) in (6.1) for non-exponential service-time distributions. It would be nice to determine
how this limit depends on the service-time distribution. We have established that there is an

invariance principle for @ < 1. We conjecture that the limit when a = 1 depends on the
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service-time distribution beyond its first two moments. It would also be nice to establish a
refined distributional limit, i.e., a weak convergence limit for n~*(D(xnl, n) - Y(x)n) as

n —> oo,

Second, it would be nice to know more about the departure RBM f(é) (Section 3). In
Remark 3.3 we noted that [&1 = 52 - [)1 is a reflecting BM, so that E[&,(l)] = 20/Vx.
Moreover, by Theorem 5.2, 13,,(1) is stochastically decreasing as k increases. However, it
would be nice to know the joint distribution, or at least the means, of (A;(1),...,Ax(1)).
Moreover, it would be nice to know the hydrodynamic limit ¥(x) for the Departure RBM in

(7.1) and (7.2). By Theorem 7.2, it determines the limit in Theorem 1.1 for0 < a < 1.

Finally, an old open problem is the limiting behavior of the stationary departure process
from n queues as n — . Here we assume that the service times V(i, j) are i.i.d. fori 2 1
and j 2 2 while the service times V(i, 1) are i.i.d. (or just stationary and ergodic) with
EV(1,1) > EV(1,2), so that the departure process from the first queue corresponds to an
external arrival process with mean interarrival time greater than the subsequence mean service
times. For the case in which V(1, 2) is exponentially distributed, but V(1, 1) is not, it is
widely believed that the stationary departure process from queue n is asymptotically Poisson as
n — 0. A comesponding result for infinite-server queues was established by Vere-
Jones (1968).
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